#define and #undef

What are #define and #undef directives ?

#define : Define a manifest constant or pseudofunction.

Syntax :

#define <idConstant> [<resultText>]
#define <idFunction>([<arg list>]) [<exp>]

Arguments :

<idConstant> is the name of an identifier to define.

<resultText> is the optional replacement text to substitute whenever a valid <idConstant> is encountered.

<idFunction> is a pseudofunction definition with an optional argument list (<arg list>). If you include <arg list>, it is delimited by parentheses (()) immediately following <idFunction>. <exp> is the replacement expression to substitute when the pseudofunction is encountered. Enclose this expression in parentheses to guarantee precedence of evaluation when the pseudofunction is expanded.

Note: #define identifiers are case-sensitive, where #command and #translate identifiers are not.

Description :

The #define directive defines an identifier and, optionally, associates a text replacement string. If specified, replacement text operates much like the search and replace operation of a text editor. As each source line from a program file is processed by the preprocessor, the line is scanned for identifiers. If a currently defined identifier is encountered, the replacement text is substituted in its place.

Identifiers specified with #define follow most of the identifier naming rules. Defined identifiers can contain any combination of alphabetic and numeric characters, including underscores. Defined identifiers, however, differ from other identifiers by being case- sensitive. As a convention, defined identifiers are specified in uppercase to distinguish them from other identifiers used within a program. Additionally, identifiers are specified with a one or two letter prefix to group similar identifiers together and guarantee uniqueness. Refer to one of the supplied header files.

When specified, each definition must occur on a line by itself. Unlike statements, more than one directive cannot be specified on the same source line. You may continue a definition on a subsequent line by employing a semicolon (;). Each #define directive is specified followed by one or more white space characters (spaces or tabs), a unique identifier, and optional replacement text. Definitions can be nested, allowing one identifier to define another.

A defined identifier has lexical scope like a filewide static variable. It is only valid in the program (.prg) file in which it is defined unless defined in Std.ch or the header file specified on the compiler command line with the /U option. Unlike a filewide static variable, a defined identifier is visible from the point where it is defined in the program file until it is either undefined, redefined, or the end of the program file is reached.

You can redefine or undefine existing identifiers. To redefine an identifier, specify a new #define directive with the identifier and the new replacement text as its arguments. The current definition is then overwritten with the new definition, and a compiler warning is issued in case the redefinition is inadvertent. To undefine an identifier, specify an #undef directive with the identifier as its argument.

#define directives have three basic purposes:

. To define a control identifier for #ifdef and #ifndef

. To define a manifest constant : an identifier defined to represent a constant value

. To define a compiler pseudofunction

The following discussion expands these three purposes of the #define directive in your program.

Preprocessor Identifiers :

The most basic #define directive defines an identifier with no replacement text. You can use this type of identifier when you need to test for the existence of an identifier with either the #ifdef or #ifndef directives. This is useful to either exclude or include code for conditional compilation. This type of identifier can also be defined using the /D compiler option from the compiler command line. See the examples below.

Manifest Constants :

The second form of the #define directive assigns a name to a constant value. This form of identifier is referred to as a manifest constant. For example, you can define a manifest constant for the INKEY() code associated with a key press:

#define K_ESC 27
 . <statements>

Whenever the preprocessor encounters a manifest constant while scanning a source line, it replaces it with the specified replacement text.

Although you can accomplish this by defining a variable, there are several advantages to using a manifest constant: the compiler generates faster and more compact code for constants than for variables; and variables have memory overhead where manifest constants have no runtime overhead, thus saving memory and increasing execution speed. Furthermore, using a variable to represent a constant value is conceptually inconsistent. A variable by nature changes and a constant does not.

Use a manifest constant instead of a constant for several reasons. First, it increases readability. In the example above, the manifest constant indicates more clearly the key being represented than does the INKEY() code itself. Second, manifest constants localize the definition of constant values, thereby making changes easier to make, and increasing reliability. Third, and a side effect of the second reason, is that manifest constants isolate implementation or environment specifics when they are represented by constant values.

To further isolate the effects of change, manifest constants and other identifiers can be grouped together into header files allowing you to share identifiers between program (.prg) files, applications, and groups of programmers. Using this methodology, definitions can be standardized for use throughout a development organization. Merge header files into the current program file by using the #include directive.

For examples of header files, refer to the supplied header files.

Compiler Pseudo-functions :

In addition to defining constants as values, the #define directive can also define pseudofunctions that are resolved at compile time. A pseudofunction definition is an identifier immediately followed by an argument list, delimited by parentheses, and the replacement expression.

For example:

#define AREA(nLength, nWidth) (nLength * nWidth)
#define SETVAR(x, y) (x := y)
#define MAX(x, y) (IF(x > y, x, y))

Pseudofunctions differ from manifest constants by supporting arguments. Whenever the preprocessor scans a source line and encounters a function call that matches the pseudofunction definition, it substitutes the function call with the replacement expression. The arguments of the function call are transported into the replacement expression by the names specified in the argument list of the identifier definition. When the replacement expression is substituted for the pseudofunction, names in the replacement expression are replaced with argument text. For example, the following invocations,

? AREA(10, 12)
SETVAR(nValue, 10)
? MAX(10, 9)

are replaced by :

? (10 * 12)
nValue := 10
? (IF(10 > 9, 10, 9)

It is important when defining pseudofunctions, that you enclose the result expression in parentheses to enforce the proper order of evaluation. This is particularly important for numeric expressions. In pseudofunctions, you must specify all arguments. If the arguments are not specified, the function call is not expanded as a pseudofunction and exits the preprocessor to the compiler as encountered.

Pseudofunctions do not entail the overhead of a function call and are, therefore, generally faster. They also use less memory. Pseudofunctions, however, are more difficult to debug within the debugger, have a scope different from declared functions and procedures, do not allow skipped arguments, and are case-sensitive.

You can avoid some of these deficiencies by defining a pseudofunction using the #translate directive. #translate pseudofunctions are not case- sensitive, allow optional arguments, and obey the dBASE four-letter rule. See the #translate directive reference in this chapter for more information.

Examples :

. In this example a manifest constant conditionally controls the compilation of debugging code:

 #define DEBUG
 . <statements>
 #ifdef DEBUG

. This example defines a manifest constant and substitutes it for an INKEY() value:

 #define K_ESC 27
 . <statements>

. This example defines pseudofunctions for the standard functions, MAX() and ALLTRIM():

 #define MAX(arg1, arg2) (IF(arg1 > arg2, arg1, arg2))
 #define ALLTRIM(cString) (RTRIM(LTRIM(cString)))
 . <statements>
 ? MAX(1, 2)
 ? ALLTRIM(" Hello ")

#undef : Remove a #define macro definition

Syntax :

#undef <identifier>

Arguments :

<identifier> is the name of the manifest constant or pseudofunction to remove.

Description :

#undef removes an identifier defined with the #define directive. After an #undef, the specified identifier becomes undefined. Use #undef to remove an identifier before you redefine it with #define, preventing the compiler warning that occurs when an existing identifier is redefined. Also, use #undef to make conditional compilation specific to certain sections of a program.

Examples :

. To define and then undefine a manifest constant and a pseudofunction:

 #define K_ESC 27
 #define MAX(x, y) IF(x > y, x, y)
 . <statements>
 #undef K_ESC
 #undef MAX

. To use #undef to undefine an identifier before redefining it:

 #define DEBUG
 . <statements>
 #undef DEBUG
 #define DEBUG .T.

. To undefine an identifier if it exists, and otherwise define it for later portions of the program file:

 #ifdef TEST
    #undef TEST
    #define TEST

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.