C5DG-7 DBFNTX Driver

Clipper 5.x – Drivers Guide

Chapter 7

DBFNTX Driver Installation and Usage

DBFNTX is the default RDD for Clipper. This new database driver replaces the DBFNTX database driver supplied with earlier versions of Clipper and adds a number of new indexing features. With DBFNTX, you can:

. Create conditional indexes by specifying a FOR condition

. Create indexes using a record scope or WHILE condition, allowing you to INDEX based on the order of another index

. Create both ascending and descending order indexes

. Specify an expression that is evaluated periodically during indexing in order to display an index progress indicator

In This Chapter 

This chapter explains how to install DBFNTX and how to use it in your applications. The following major topics are discussed:

. Overview of the DBFNTX RDD

. New Locking Scheme

. Conditional Indexing

. Installing DBFNTX Driver Files

. Linking the DBFNTX Driver

. Using the DBFNTX Driver

. Compatibility with dBASE III

Overview of the DBFNTX RDD

As an update of the default database driver, DBFNTX is linked into and used automatically by your application unless you compile using the /R option.

New Features

The replaceable driver lets you create and maintain (.ntx) files using features above and beyond those supplied with the previous DBFNTX driver. The new indexing features are supplied in the form of several syntactical additions to the INDEX and REINDEX commands. Specifically you can:

. Specify full record scoping and conditional filtering using the standard ALL, FOR, WHILE, NEXT, REST, and RECORD clauses

. Create an index while another controlling index is still active

. Monitor indexing as each record (or a specified record number interval) is processed using the EVAL and EVERY clauses

. Eliminate separate coding for descending order keys using the DESCENDING clause

Compatibility

Index files (.ntx) created with the original DBFNTX driver are compatible with DBFNTX and can be used in new applications without reindexing. Index files (.ntx) created with this version of DBFNTX will also work with previous Clipper applications provided that you use no FOR, WHILE, <scope>, or DESCENDING clauses.

Important! Indexes produced with DBFNTX using FOR or DESCENDING are incompatible with earlier version (.ntx) files. If you attempt to access them with the original DBFNTX database driver or programs compiled with versions earlier than Clipper 5.2, you will get an unrecoverable runtime error. In Clipper, this generates an “index corrupted” error message, causing the application to terminate.

New Locking Scheme

The DBFNTX database driver implements a new locking scheme to resolve several problems identified in previous versions of Clipper and to prevent potential problems that might arise when running Clipper applications in a network environment. This section discusses these changes and their implications, including compatibility issues.

Lock Time-outs

Problem: Index locking in previous versions of Clipper was handled automatically by the database driver, and had no time-out provision. This created the potential for problems in network environments if a workstation died while holding a lock. If this situation occurred all other workstations waiting for an index lock would appear to freeze while waiting to obtain their lock. This could also happen if a user placed a Clipper application in the background on a multitasking system without sufficient processing time allocated to it. Eventually, most network operation systems would clear a connection that had no activity for a specified period of time. This would free the lock and everything would resume as normal, but frustrated users may have rebooted their machines possibly causing file corruption.

Solution: In Clipper 5.2 the NTX driver will generate a recoverable runtime error if it fails to lock the index after a predetermined number of retries. The default error handler for this system simply returns (.T.) to retry the operation. This emulates the behavior of previous Clipper versions.

Error Handling

Time out handling: The handling of this error is problematic because the lock is issued from various internal index routines. Therefore the only safe recoveries are to retry or quit. Choosing to default from the error or issuing a break will more than likely leave the index in a corrupted state. If either of the options is employed, the application should immediately recreate the index. The preferred way to handle a time out such as this is to alert the user of the situation so they don’t think their machine has hung, and then have the network administrator determine what workstation is causing the problem. When the problem workstation is cleared, the users that have timed out can select retry and continue processing.

NTXERR.PRG: The file NTXERR.PRG contains the source code for the default error handler INIT procedure. This error handler can be modified to allow user-defined error handling for index lock time-outs. Care should be exercised when modifying the error handler as detailed above.

Compatibility: The lock time-out capability when used in conjunction with the default error handler is totally compatibility with previous versions of Clipper. No changes are made to the NTX file structure and no action is required by the developer to activate the time-out functionality.

New Lock Offset

Problem: Index locking, which is transparent to the developer, uses a single-byte semaphore locking system. This semaphore was placed at a virtual offset (beyond the physical end of file) in the index file. In previous versions of Clipper, this offset was located at one billion (1,000,000,000) which was adequate at the time. But many systems today are capable of producing indexes that are large enough to cause the actual data present at the lock offset to become physically locked. This leads to problems when trying to read or write to the data at that offset.

Solution: The solution is to move the offset where locking occurs to a location at a greater offset. We have chosen FFFFFFFF hex, which is the largest offset possible under the DOS operating system. The problem with this solution is that new applications using the index will be locking this new byte while old applications using the same index will lock the old position. Clearly this would cause both applications to fail because each could have a lock on the file at the same time.

To avoid this, the signature of the index (in the index header) is modified to prevent pre-Clipper 5.2 applications from being able to open the index. Clipper 5.2 applications can detect the correct offset to use by the flag in the header and will automatically use the correct one. In Figure 7-1 below, each bit represents a flag:

BIT  7 6 5 4 3 2 1 0
FLAG R R R O P I I C
R Reserved
I Index type - both bits set (NTX)
C Index created with a Condition, condition in header
T Created as a Temporary index
O New Offset for exclusive (semaphore) lock
Figure 7-1: Bit Field for the Signature Byte of a -Clipper 5.2 NTX File

Activation

If Clipper 5.2 automatically modified the signature in the header when it created indexes, programs with automatic reindexing routines would be creating indexes that appeared corrupt to pre-Clipper 5.2 applications. This has an obvious problem with backward compatibility. Therefore, in order to create indexes with the new signature, the developer must link in the module NTXLOCK2.OBJ with the full knowledge that this will create indexes that older applications will not be able to access.

Header Changes

The signature byte of a .NTX file is 6 for an unenhanced NTX index. The inclusion of the NTXLOCK2.OBJ will cause the signature to become 26 hex. (6 hex ORed with 20 hex). See Figure 7-1 for an illustration of all the possible values for the signature byte.

Error Handling

Clipper 5.2 applications will automatically recognize the signature byte of the header, and depending on the signature value, will use the correct index lock location. Applications built with previous versions of Clipper, however, do not have the capability to detect the optional new information in the signature byte. Therefore, when an order application tries to open a file that has been created with the NTXLOCK2.OBJ linked in it will produce a Corruption Detected error.

Compatibility

The new locking location, if used, is not backward compatible with applications compiled with previous versions of Clipper.

Indexes created by applications built with a previous version of Clipper can be used by Clipper 5.2 using the new location and will not be modified unless the index is recreated in application.

Since older applications have no knowledge of the new index locking scheme nor of the significance of the header signature, these applications will assume the index is corrupt and will produce an Index Corrupted error.

Conditional Indexing

Conditional indexes are a feature of the DBFNTX driver. This section discusses this feature of the DBFNTX driver in some detail, giving you specific information about the implementation of conditional indexes. Compatibility issues are also discussed.

Conditional Indexes

Conditional indexes are produced by using a FOR condition in the index creation process. These indexes are made fully maintainable by storing the FOR condition in the index header. This condition is subsequently retrieved and compiled each time the index in opened. During updates, items are added to the index only if they meet the criteria of the condition.

Since older applications do not have the ability to recognize and use the condition stored in the header, they must be prevented from opening the index since they corrupt the index. This is accomplished by modifying the signature of the index (in the index header) preventing pre-Clipper 5.2 applications from being able to open the index. Clipper 5.2 applications can detect the flag in the header and will automatically use the stored FOR condition correctly.

Temporary Indexes

Temporary indexes are produced by using any scoping clause other than the FOR condition in the index creation process. These indexes are not automatically maintainable because the condition is not stored for later use. These indexes can be made maintainable if the condition can be expressed as a FOR condition and is added using the FOR clause. But the main use of temporary indexes is for fast creation of indexes for read- only browses or reports that operate on a subset of the database.

Since older applications would not operate properly with indexes that do not contain all the keys in a given database, they must be prevented from using them. This is accomplished by modifying the index signature to prevent pre-Clipper 5.2 applications from being able to open the index.

Activation

Conditional Indexes

The developer need only specify the FOR condition when creating the index. In doing so he must be fully aware the index will no longer be accessible to pre–Clipper 5.2 applications.

Temporary Indexes

The developer need only specify a scope other than FOR when creating the index. In doing so he must be fully aware the index will no longer be accessible to pre-Clipper 5.2 applications and that the index created is not maintainable.

Header Changes

The signature byte of a .NTX file is 6 for a unenhanced NTX index. If the index is created as a conditional index it will have a signature of 7 hex (6 hex ORed with 1 hex). If the index is created as a temporary index it will have a signature of E hex. (6 hex ORed with 8 hex). See Figure 7-1 for an illustration of all the possible values for the signature byte.

Error Handling

Corruption Detected

Since older applications have no knowledge of the new index features nor how to interpret the additional flags in the header signature, these applications will assume the index is corrupt and will produce an Index Corrupted error.

EOF()

If an index is created with a FOR condition and an attempt is made to update the index with a key that does not match the condition, the update is suppressed and the index is placed at EOF(). This is consistent with the current behavior for indexes created with the unique flag when an update is attempted with a non-unique key.

Also if a navigational action is attempted (SKIP) and the current record is not found in the index, the index will place the record pointer at EOF(). This is true for both conditional and temporary indexes.

Compatibility

Backward Compatibility

If the conditional or temporary indexing features are used the index produced will not be backward compatible with applications compiled with previous versions of Clipper. Indexes that do not use the features, however, will be 100% compatible.

Forward Compatibility

Indexes created by applications built with a previous version of Clipper can be used by Clipper 5.2 and will not be modified unless the index is recreated using either the conditional or temporary index features.

Error Message Produced by Old Applications

Since older applications have no knowledge of the new index locking scheme nor of the significance of the header signature, these applications will assume the index is corrupt and will produce an Index Corrupted error.

Installing DBFNTX Driver Files

DBFNTX is supplied as the file DBFNTX.LIB.

The Clipper installation program installs this driver as the default in the \CLIPPER5\LIB subdirectory on the drive that you specify, so you need not install the driver manually.

Important! Before installing Clipper, you may want to rename the DBFNTX.LIB that currently resides in your \CLIPPER5\LIB directory to DBFNTX.001. The new version, when installed, will overwrite DBFNTX.LIB. If you do not rename or otherwise protect the old version of DBFNTX.LIB, you will lose it.

Linking the DBFNTX Database Driver

Since DBFNTX is the default database driver for Clipper, there are no special instructions for linking. Unless you specify the /R option when you compile, the new driver will be linked into each program automatically if you specify a USE command or DBUSEAREA() function without an explicit request for another database driver. The driver is also linked if you specify an INDEX or REINDEX command with any of the new features.

Using the DBFNTX Database Driver

In applications written for the new DBFNTX driver, you can use the INDEX and REINDEX commands exactly as you have used them in the past. The index files (.ntx) you create and maintain in this way are completely compatible with those created using previous versions of the driver.

Changes to existing code are necessary only if you use the new indexing features. The (.ntx) files you create using the new features will have a slightly different header file and cannot be used by programs linked with a previous version of the driver.

Using (.ntx) and (.ndx) Files Concurrently

You can use (.ntx) and (.ndx) files concurrently in a Clipper program like this:

// (.ntx) file using default DBFNTX driver

USE File1 INDEX File1 NEW

// (.ndx) files using DBFNDX driver

USE File2 VIA "DBFNDX" INDEX File2 NEW

Note, however, that you cannot use (.ntx) and (.ndx) files in the same work area. For example, the following does not work:

USE File1 VIA "DBFNDX" INDEX File1.ntx, File2.ndx

Compatibility with dBASE III PLUS

The default DBFNTX driver makes Clipper programs behave differently than traditional dBASE programs. Some of these differences are discussed below.

Supported Data Types

The DBFNTX database driver supports the following dBASE III PLUS- compatible data types for key expressions:

. Character

. Numeric

. Date

. Logical

Supported Key Expressions

When you create (.ntx) files using the DBFNTX driver, you can use all Clipper or user-defined functions compatible with dBASE III PLUS as well as other functions accepted by the extended Clipper functionality.

Error Handling

The indexing behavior of DBFNTX and DBFNDX in a Clipper application is identical unless otherwise noted. With the default DBFNTX driver, you can handle most errors using BEGIN SEQUENCE…END SEQUENCE as illustrated in the next section.

FIND vs SEEK

In Clipper, you can use the FIND command only to locate keys in indexes where the index key expression is character data type. This differs from dBASE III PLUS where FIND supports character and numeric key values.

Note: In Clipper programs, always use the SEEK command or the DBSEEK() function to search an index for a key value.

The DBFNTX driver lets you recover from data type errors raised during a FIND or SEEK. However, since Error:canDefault, Error:canRetry or Error:canSubstitute are set to false (.F.), you should use BEGIN SEQUENCE…END to handle such SEEK or FIND data type errors. Within the error block for the current operation, issue a BREAK() using the error object that the DBFNTX database driver generates, like this:

bOld := ERRORBLOCK({|oError| BREAK(oError)})
 .
 .
 .
 BEGIN SEQUENCE
     SEEK xVar
 RECOVER USING oError
     // Recovery code END
 .
 .
 .
 ERRORBLOCK(bOld)

There is an extensive discussion of the effective use of the Clipper error system in the Error Handling Strategies chapter of the Programming and Utilities guide.

Sharing Data on a Network

The DBFNTX driver provides file and record locking schemes that are different from dBASE III PLUS schemes. This means that if the same database and index files are open in Clipper and in dBASE III PLUS, Clipper program locks are not visible to dBASE III PLUS and vice versa.

Warning! Database integrity is not guaranteed and index corruption will occur if Clipper and dBASE III PLUS programs attempt to write to a database or index file at the same time. Therefore, concurrent use of the same database (.dbf) and index (.ndx) files by dBASE III PLUS and Clipper programs is strongly discouraged and not supported by Computer Associates.

Summary

In this chapter, you were given an overview of the new features of the default DBFNTX RDD. You learned how to this driver is automatically linked and how to use it in your applications, and were given an overview of the compatiblity issues.

C5DG-2 RDD Architecture

Clipper 5.x – Drivers Guide

Chapter 2

Replaceable Database Driver Architecture

Clipper supports a driver architecture that allows Clipper applications to use Replaceable Database Drivers (RDDs). The RDD system makes Clipper applications data-format independent. Such applications can, therefore, access the data formats of other database systems, including the dBASE IV (.mdx), FoxPro (.cdx), and Paradox (.db) formats on a variety of equipment. This driver architecture can even support database drivers that are not file-based, although all of the drivers supplied with Clipper 5.x are file-based.

The concept of replaceable drivers is not new to this version of Clipper. In previous versions, the use of the default database driver (DBFNTX.LIB) was hidden by the fact that it was automatically linked into your application. In fact, this is still the case. The DBFNTX driver has been replaceable since it was first introduced in version 5.0. Before this version, the DBFNTX driver was the only RDD supplied as part of the system.

In This Chapter

With the introduction of the new RDDs, Clipper provides many new and enhanced commands and functions that access and manipulate databases. These language elements can enable your applications to access data regardless of the RDD under which it is ordered. There are also commands and functions that give you specific information about the RDDs in use.

The Language Implementation section of this chapter includes tables that summarize these new and enhanced language elements. This chapter also covers basic terminology, implementation principals, and general concepts of the Order Management System.

The following major topics are discussed:

. RDD Basics

. Basic Terminology

. The Language Implementation

. Order Management System

RDD Basics

The cornerstone of the replaceable database driver system is the Clipper work area. All Clipper database commands and functions operate in a work area through a database driver that actually performs the access to the stored database information. The layering of the system looks like this:

                      +———————————+

                      | Database Commands and Functions |
                      ----------------------------------|
                      |          RDD Interface          |
                      |---------------------------------|
                      |         Database driver         |
                      |---------------------------------|
                      |           Stored Data           |
                      +---------------------------------+

 In this system, each work area is associated with a single database driver. Each database driver, in turn, is supplied as a separate library file (.LIB) you link into your application programs. Within an application, you specify the name of the database driver when you open or access a database file or table with the USE command or DBUSEAREA() function. If you specify no database driver at the time a file is opened, the default driver is used. You may select which driver will be used as the default driver.

Once you open a database in a work area, the RDD used for that work area is automatically used for all operations on that database (except commands and functions that create a new table). Any command or function that creates a new table (i.e., SORT, CREATE FROM, DBCREATE(), etc.) uses the default RDD. Most of the new commands and functions let you specify a driver other than the default driver.

The normal default database driver, DBFNTX (which supports the traditional (.dbf), (.ntx), and (.dbt) files) is installed into your \CLIPPER5\LIB directory. This driver is linked into each program automatically to provide backwards compatibility.

To use any of the other supplied drivers, either as an additional driver or an alternate driver, you must use the REQUEST command to assure that the driver will be linked in. You must also include the appropriate library on the link line.

All Clipper applications will automatically include code generated by RDDSYS.PRG from the \CLIPPER5\SOURCE\SYS subdirectory. If you wish to automatically load another RDD, you must modify and compile RDDSYS.PRG and link the resulting object file into your application. The content of the default RDDSYS.PRG is shown below. Only the portion in bold should be modified

 
     //  Current RDDSYS.PRG
     #include "rddsys.ch"

     ANNOUNCE RDDSYS                     // This line must not change
     INIT PROCEDURE RddInit
        REQUEST DBFNTX                   // Force link for DBFNTX RDD
        RDDSETDEFAULT( "DBFNTX" )        // Set up DBFNTX as default
                                         // driver

        RETURN

     // eof: rddsys.prg

To change the default to a new automatically-loading driver, modify the bold lines in RDDSYS.PRG to include the name of the new driver. For example:

     //  Revised RDDSYS.PRG
     #include "rddsys.ch"

     ANNOUNCE RDDSYS                     // This line must not change
     INIT PROCEDURE RddInit
        REQUEST DBFCDX                   // Force link for DBFCDX RDD
        RDDSETDEFAULT( "DBFCDX" )        // Set up DBFCDX as default
                                         // driver

        RETURN

     // eof: rddsys.prg

If you change this file, all Clipper applications in which it is linked will automatically include the new RDD.

To use any RDD other than the default, you must explicitly identify it through use of the VIA clause of the USE command.

You need not disable the automatic DBFNTX loading to use other RDDs in your applications, but if your application will not use any DBFNTX functionality, you can save its code overhead by disabling it.

To completely disable the automatic loading of a default RDD, remove the two lines shown above in bold. For example:

     //  New Revised RDDSYS.PRG
     //  disables auto-loading
     #include "rddsys.ch"

     ANNOUNCE RDDSYS                     // This line must not change
     INIT PROCEDURE RddInit

        RETURN
     // eof: rddsys.prg

Basic Terminology

The RDD architecture introduces several new terms and concepts that are key to the design and usage of RDDs. You should familiarize yourself with these concepts and terms as you begin to use the RDD functionality. The meaning of some earlier terminology is also further defined. The following RDD functional glossary defines the terminology for all RDDs.

. Key Expression : A valid Clipper expression that creates a key value from a single record.

. Key Value : A value that is based on value(s) contained within database fields, associated with a particular record in a database.

. Identity : A unique value guaranteed by the structure of the data file to reference a specific record in a database even if the record is empty. In the Xbase file (.dbf), the identity is the record number; but it could be the value of a unique primary key or even the offset of an array in memory.

. Keyed-Pair : A pair consisting of a key value and an identity.

. Identity Order : Describes a database arranged by identity. In Xbase, this refers to the physical arrangement of the records in the database in the order in which they were entered (natural order).

. Tag : A set of keyed-pairs that provides ordered access to the table based on a key value. Usually, an Order in a multiple-Order index (Order). An Order.

. Order : A named mechanism (index) that provides logical access to a database according to the keyed-pairs. This term encompasses both single indexes and the Tags in multiple-Tag indexes.

Orders are not, themselves, data files. They provide access to data that gives the appearance of an ordering of the data in a specific way. This ordering is defined by the relationships between keyed- pairs. An Order does not change the physical (the natural or entry) order of data in a database.

. Controlling Order : The active Order (index) for a particular work area. Only one Order may control a work area at any time, and it controls the order in which the database is accessed during paging and searching.

. Order List : A list of all the Orders available to the database in the specified work area.

. Order Bag : A container that holds zero or more Orders. Normally a disk or memory file. A traditional index like (.ntx) is an Order Bag that holds only one Order. A multiple-Tag index (.mdx or .cdx) is an Order Bag that holds zero or more Orders. Though Order Bags may be a memory or disk file, Clipper 5.x only supports Order Bags as disk files.

. Record : A record in the traditional database paradigm is a row of one or more related columns (fields) of data. In the expanded architecture of Clipper, a record could be data that does not exactly fit this definition.

A record is, in this expanded context, data associated with a single identity. In an Xbase data structure, this corresponds to a row (fields associated with a record number); in other data structures, this may not be the case.

In this document we use “record” in the traditional sense, but you should be aware that Clipper permits expansion of the meaning of record.

. single-Order Bag : An Order Bag that can contain only one Order. The (.ntx) and (.ndx) files are examples of single-Order Bags.

. multiple-Order Bag : An Order Bag that can contain any number of Orders; a multiple-Tag index. The (.cdx) and (.mdx) files are examples of multiple-Order Bags.

. maintainable scoped Orders : Scoped (filtered) Orders created using the FOR clause. The FOR condition is stored in the index header. Orders of this type are correctly updated using the expression to reflect record updates, deletions and additions.

. non-maintainable/temporary Orders : Orders created using the WHILE or NEXT clauses. These Orders are useful because they can be created quickly. However, the conditions in these clauses are not stored in the index header. Therefore, Orders of this type are not correctly updated to reflect record updates, deletions and additions. They are only for temporary use.

. Lock List : A list of the records that are currently locked in the work area.

The Language Implementation

To support the RDD architecture and let you design applications that are independent of the data format you are using, many existing Clipper commands and functions have been enhanced, and several new language elements have been added. The following tables summarize these changes and additions. See the Reference chapter of this guide for more detailed information on a particular item.

     Enhanced Commands and Functions
     ------------------------------------------------------------------------
     Command/Function  Changes
     ------------------------------------------------------------------------
     APPEND FROM       VIA clause
     COPY TO           VIA clause
     DBAPPEND()        Terminology
     GO                Terminology
     DBAPPEND()        Terminology
     INDEX             ALL, EVAL, EVERY, NEXT, RECORD, REST, TAG, and
                       UNIQUE clauses
     SEEK              SOFTSEEK option
     SET INDEX         ADDITIVE clause
     SET ORDER         IN, TAG clauses
     DBSETINDEX()      Terminology
     RECNO()           Terminology
     ------------------------------------------------------------------------

     New Commands and Functions
     ------------------------------------------------------------------------
     Command/Function    Description
     ------------------------------------------------------------------------
     DELETE TAG          Delete a Tag (Order)
     DBGOTO()            Position record pointer to a specific identity
     DBRLOCK()           Lock the record at the current or specified identity
     DBRLOCKLIST()       Return an array of the currently locked records
     DBRUNLOCK           Release all or specified record locks
     ORDBAGEXT()         Return the Order Bag file extension
     ORDBAGNAME()        Return the Order Bag name of a specific Order
     ORDCREATE()         Create an Order in an Order Bag
     ORDDESTROY()        Remove a specified Order from an Order Bag
     ORDFOR()            Return the FOR expression of an Order
     ORDKEY()            Return the Key expression of an Order
     ORDLISTADD()        Add Order Bag contents or single Order to the Order
                         List
     ORDLISTCLEAR()      Clear the current Order List
     ORDLISTREBUILD()    Rebuild all Orders in the Order List of the current
                         work area
     ORDNAME()           Return the name of an Order in the work area
     ORDNUMBER()         Return the position of an Order in the current Order
                         List
     ORDSETFOCUS()       Set focus to an Order in an Order List
     RDDLIST()           Return an array of the available Replaceable
                         Database Drivers
     RDDNAME()           Return the name of the RDD active in the current or
                         specified work area
     RDDSETDEFAULT()     Set or return the default RDD for the application
     ------------------------------------------------------------------------

User Interface Levels

We want to make it easy for you to quickly take advantage of the added functionality provided in Clipper 5.x. In order to effectively use the RDDs, you should read the following discussions. They are provided as a means of identifying the degree of programming knowledge or Clipper experience that will let you effectively use the RDD features.

For this purpose the RDD feature set is arbitrarily divided into levels A and B. Tables listing the commands or functions that comprise these access levels are also supplied. In addition, an RDD Features Summary is provided in table form which outlines the features available in each driver. The commands and functions in both of these levels of access are described in the Reference chapter of this guide.

Level A – Command-Level Interface

Level A. a simple command-level interface very similar to those found in other languages (e.g., dBASE IV, FoxPro). This is the primary access for new Clipper users who may or may not be familiar with other languages.

The following table lists the commands and functions accessible by the Clipper programmer with background in languages such as dBASE or FoxPro. The commands and functions in this table provide access to the additional features without requiring an advanced knowledge of Clipper or other programming concepts.

     Basic Commands and Functions
     ------------------------------------------------------------------------
     Command/Function  Changes
     ------------------------------------------------------------------------
     DELETE TAG        Delete a Tag
     GOTO              Move the pointer to the specified identity
     INDEX             Create an index file
     SEEK              Search an Order for a specified key value
     SET INDEX         Open one or more Order Bags in the current work area
     SET ORDER         Select the controlling Order
     DBAPPEND()        Append a new record to the current Lock List
     DBRLOCK()         Lock the record at the current or specified identity
     DBRLOCKLIST()     Return an array of the current Lock List
     DBRUNLOCK         Release all or specified record locks
     ------------------------------------------------------------------------

Level B – Function-Level Interface

Level B. Clipper also adds a function level interface that not only allows access to the enhanced functionality of the drivers, but permits the building of higher-level functions using these composing behaviors. This level is meant for more experienced Clipper users who need to take advantage of the full power of the driver and Order Management System.

The following table lists the DML and Order Management functions recommended to the intermediate to advanced Clipper programmer. These functions provide the greatest flexibility in accessing the extended features of these drivers

     Advanced Functions (including Order Management)
     ------------------------------------------------------------------------
     Command/Function    Description
     ------------------------------------------------------------------------
     DBAPPEND()          Append a new record to the current Lock List
     DBRLOCK()           Lock the record at the current or specified identity
     DBRLOCKLIST()       Return an array of the current Lock List
     DBRUNLOCK()         Release all or specified record locks
     ORDBAGEXT()         Return the default Order Bag RDD extension
     ORDBAGNAME()        Return the Order Bag name of a specific Order
     ORDCREATE()         Create an Order in an Order Bag
     ORDDESTROY()        Remove a specified Order from an Order Bag
     ORDFOR()            Return the FOR expression of an Order
     ORDKEY()            Return the Key expression of an Order
     ORDLISTADD()        Add Order Bag contents or single Order to the Order
                         List
     ORDLISTCLEAR()      Clear the current Order List
     ORDLISTREBUILD()    Rebuild all Orders in the Order List of the current
                         work area
     ORDNAME()           Return the name of an Order in the work area
     ORDNUMBER()         Return the position of an Order in the current Order
                         List
     ORDSETFOCUS()       Set focus to an Order in an Order List
     RDDLIST()           Return an array of the available Replaceable
                         Database Drivers
     RDDNAME()           Return the name of the RDD active in the current or
                         specified work area
     RDDSETDEFAULT()     Set or return the default RDD for the application
     ------------------------------------------------------------------------

RDD Features

The following decision table summarizes the availability of key features across RDDs. It lists the features available in each RDD so you can use it as an aid in correct RDD implementation and data access.

     RDD Features Summary
     ------------------------------------------------------------------------
     Item                                NTX   NDX   MDX   CDX  DBPX
     ------------------------------------------------------------------------
     Implicit record unlocking in        Yes   Yes   Yes   Yes  Yes
     single lock mode
     Multiple Record Locks               Yes   Yes   Yes   Yes  No
     Number of Concurrent Record Locks   *1    *1    *1    *1   1
     Order Management (Tag support)      Yes   Yes   Yes   Yes  No
     Orders (Tags) per Order Bag (File)  1     1     47    50   N/A
     Number of Order Bags (Files)        15    15    15    15   N/A
     per work area
     Conditional Indexes (FOR clause)    Yes   No    Yes   Yes  No
     Temporary (Partial) Indexes         Yes   No    No    Yes  No
     (WHILE, ... )
     Descending via DESCENDING clause    Yes   No    Yes   Yes  No
     Unique via the UNIQUE clause        Yes   Yes   Yes   Yes  No
     EVAL and EVERY clause support       Yes   No    No    Yes  No
     Production/Structural Indexes       No    No    Yes   Yes  No
     Maximum Key Expression length       256   256   220   255  N/A
     (bytes)
     Maximum FOR Condition length        256   N/A   261   255  N/A
     (bytes)
     ------------------------------------------------------------------------

     *1 determined by available memory.

Clipper 5.x Order Management

Clipper includes a new Order Management System which provides a more effective and flexible way of indexing data. The main objective of the new Order Management implementation is to raise the Xbase indexing paradigm from a low level of abstraction (Xbase database specific) to a higher, more robust, level. This higher level of abstraction allows the user to build new commands and functions.

Low level abstraction refers to manipulation of discrete elements in the database architecture (i.e., field names and sizes, methods of handling controlling indexes, etc.).

High level abstraction refers to manipulation of general elements in a data source. It lets us, for example, set a controlling Order without explicitly addressing the character of the data file structure. This higher level of abstraction was achieved by reviewing all the processes that indexes have in common.

The Order Management function set was generically named (i.e. non-dbf specific) to provide a semantic that could encompass future RDD implementations that may not be file-bound. For example, an RDD could easily be created that orders (indexes) on a memory array, or other data structure, instead of a database. Therefore, all Order Management functions simply begin with ORD (for Order). You will find the function names to be self-explanatory (e.g., ORDCREATE() creates an Order, and ORDDESTROY() destroys an Order).

Concept

An Order is a set of keyed-pairs that provides a logical ordering of the records in an associated database file. Each key in an Order (index) is associated with a particular identity (record number) in the data set (database file). The records can be processed sequentially in key order, and any record can be located by performing a SEEK operation with the associated key value. An Order never physically changes the data that it’s applied against, but creates a different view of that data.

There are at least four basic types of processes that you can perform with an Order:

1. Ordering: Changes the sequence in which you view the data records.

2. Scoping: Constrains the visibility of data to specified upper and lower bounds. Determines the range of data items included, through a scoping rule, like the WHILE clause.

3. Filtration: Visibility of data is subject to conditional evaluation. Filtration determines which items of data are included, through a filter rule, like the FOR clause.

4. Translation: Values in underlying data source are translated (or converted) in some form based on a selection criteria. For example:

INDEX ON IIF(CUSTID > 1000, "NEW", "OLD")

The difference between scope and condition as it applies to FOR and WHILE is that the WHILE clause provides scope, but not filtering, but a FOR clause can provide both.

There are three primary elements in Order Management:

. Order: An Order is a set that has two elements in it: an Order Name, which is a logical name that can be referenced, and an Order Expression which supplies the view of the data. The Order Name provides logical access to the expression and the Order Expression provides a way of viewing the underlying data source. Data ordering can also be modified to ascending or descending sequence.

– Order Name: An Order Name is a symbolic name, that you use to manipulate an Order, like a file’s alias. The difference between an Order Name and the Order Number with which you would normally access indexes (Orders), is that the Order Name is stored in the index file. It is available each time you run the program, and is maintained by the system. The Order Number is generated each time the Order is added to an Order List and may change from one program execution to another. This makes Order Name the preferred means of referencing Orders.

– Order Expression: Is any valid Clipper expression. This is an index expression such as:

CUSTLIST->CUSTID

This expression produces the ordered view of the data. The values derived from this expression are sorted, and it is the relationship of these values to one another that provides the actual ordering.

. Order Number: An Order Number is provided by the Order List. An Order Number is only valid as long as the work area to which it belongs is open.

– Order Numbers provide one of the services performed by Order Names, allowing you to access a specific Order. In general, you should avoid accessing Orders by number.

– The ORDNUMBER() function returns the ordinal position of the specified <orderName> within the specified <orderList>.

. Order Bag: Unsorted collection of Orders. Each Order contains two elements (Order Name and Order Expression). Each Order Bag may have zero to n Orders. The maximum is determined by the RDD driver being used. Order Bags are similar to multiple-index files in that there’s no guarantee of any specific order within the container or Bag. Within an Order Bag you can access specific Orders by referencing a particular Order Name. Order Bags have persistence between activations of the program.

. Order List: An Order List orders the collection of Orders that are associated with and active in the current work area. It provides an access to the Orders active within a given work area. Each work area has an Order List, and there is only one Order List per work area. An Order List is created when a new work area is opened, and exists only as long as that work area is active. Once you close a work area, the Order List ceases to exist.

When you SET INDEX TO, the contents of the Order Bag are emptied into the Order List. At this point, the Orders in the Order List are active in the work area, where they will be updated as the data associated with the work area is modified. You may access an Order in the list by its Order Number or by its Order Name. You should access an Order by its name rather than a hard-coded ordinal position. You can make any Order in the Order List the controlling Order by giving it focus, as explained below.

. Order List Focus: Order List Focus is, essentially, a pointer to the Order that is used to change the view of the data. It is synonymous with controlling Order or controlling index, and defines the active index order. The SET ORDER TO command does not modify the Order List in any way. It does not clear the active indexes. It only changes the Order List Focus (the controlling order in the Order List).

Notes

The following list contains specific information regarding Order Bag usage and limitations with DBFNDX and DBFNTX index files:

. Single-Order Bags: With DBFNDX and DBFNTX you can explicitly assign the Order Name within the Order creation syntax. You can then use the Order Name in any command or function that accepts an Order Name (Tag) as a parameter.

. Single-Order Bag with INDEX ON: Single-Order Bags may retain the Order Name between activations. During creation, DBFNTX stores an optionally supplied Order Name in the file’s header for subsequent use. Therefore, the Order Name is not necessarily the same as that of the file. By contrast, DBFNDX cannot store an Order Name since this would prevent dBASE from accessing the file. By default DBFNDX Orders inherit the name of their index file.

Summary

This chapter has introduced you to the RDD concept, giving you specific information on the architecture that implements RDDs in Clipper. The basic terminology of RDDs has also been defined.

Finally, you have seen an overview of the language enhancements designed to make using RDDs straightforward and to let you build applications that do not depend on the RDD in use. The next chapter elaborates on these language enhancements, discussing syntax and usage in detail.