
Laying the foundation

(using Clipper 5.0's arrays and code blocks)

Part -1 : Arrays

Data Based Advisor
April 01, 1991 de Lisle, Phil

In last month's article, I used Clipper concepts to describe some of the technical jargon surrounding object-
oriented programming or OOP. This month I'll examine the new features of Clipper 5.0 that you'll use to create
the user-defined objects (UDOs) I cover later in this series. To that end, this article will only deal with the
arrays, code bocks, and objects we'll need later. I'll also offer some undocumented tips you may find useful.

Arrays in 5.0

Arrays in the new Clipper are radically different from their counterparts in Summer '87. The most important

difference is that they're now a true data type. This means they can be RETURNed from a user-defined function

(UDF).

Unlike arrays in other programming languages, a 5.0 array is simply a reference to a location in memory where
the data is stored. This has an important ramification--you can now assign the same array to two different
variables. In the code below, we create two local variables, aArray and aNew, which are assigned NIL
by Clipper automatically. We then assign an array with two elements to aArray. When we assign aArray to
aNew, both varibles contain a reference to the same area of memory.

local aArray, aNew
aArray := {"Example", "Array"}
aNew := aArray

However when two or more arrays reference the same area of memory in this way, any change made to an
element in one array will be reflected in the others. So, for example, if aArray[2] is changed to "ARRAY",
aNew[2] also contains "ARRAY"

Here's a quick tip: If you need a copy of an array (so changes to one aren't reflected in the other), use the

ACLONE() function.

Summer '87 arrays are always passed to UDFs by reference--we aren't required to supply the reference symbol
"@" in front of the array parameter as we are with other variable types.

In 5.0, though, arrays aren't passed by reference. However, this change has no effect on our code because
an array is just a reference to an area memory. Any changes made to the array within the UDF are still
"visible" from the calling procedure.

Suppose we want our UDF to assign a totally different array to our array parameter. In Summer '87, this was
messy and involved laboriously copying each element of the new array to the array parameter. In 5.0 we just
pass the array parameter by reference, prefixing it with "@". Within the UDF, we assign the new array to
the array parameter, so that it now holds a reference to a different area of memory. When our UDF returns,
the array variable retains this new reference.

Multi-dimensional arrays--do they exist?

5.0 does not have multi-dimensional arrays! As in Summer '87, they have a single dimension. However, in 5.0,
it's easy to create multi-dimensional arrays.

How does this work? Well, we now know that arrays are a true data type, and from Summer '87, we also know
that Clipper's arrays can store any data type to any element and that each array element can store a different
data type. Therefore, we can store the reference to another array to an array element. We call this a
"nested" array.

We can use this nested approach to create multi-dimensional arrays. However, a word of caution: traditional
programming languages require each element within the same column of a multi-dimensional array to contain
the same data type. Clipper imposes no such restriction.

The life of an array

An array only "exists" as long as there's at least one active reference to it. Consider the following code
fragment, which creates a local variable, assigns an array to it, then displays it before reassigning it a numeric:

local aArray := {"Array ", "Lives"}
? aArray[1], aArray[2]
aArray := 25

The moment we reassign 25 to aArray, the reference to {"Array", "Lives"} is destroyed and the memory
occupied by the array is returned to the pool--there's no longer a reference to it.

To prevent an element of a nested array from being "de-referenced," assign it to another variable before
reassigning the array variable, as in the code below:

local aArray, aSave
aArray := {12, {"Kee", "this"}, .f.}
aSave := aArray[2]
aArray := NIL

"But arrays look like..."

Many Clipper developers with C or Pascal/Modula2 experience comment that Clipper's new arrays look
suspiciously like linked lists of structures/records, as indeed they do. With the new preprocessor, you can use
an array to create a structure and a linked list where the array element number acts as the pointer into the

list. See DIRECTORY.CH supplied on the distribution disks and the documentation for DIRECTORY() for ideas on

how to do this.

Conclusion

This month we've looked at some of the aspects of 5.0's new features, including arrays and code blocks, which
are the foundation for UDOs. We've also examined 5.0's objects, which we'll need to understand before we can
create templates for our UDOs.

Next time I'll cover the alias technique in detail. This is a pure OOP technique that works with both Summer '87
and 5.0.

Despite his French name, Phil de Lisle is English. He is the CEO of Lamaura Development and has
spoken at many user groups and developers conferences in the U.S. and around the world
on Clipper and OOP. You can contact Phil through Data Based Advisor or on CompuServe
(100016,1254).

http://www.accessmylibrary.com/coms2/summary_0286-9230360_ITM

