
Preprocessor Primer

Data Based Advisor

July 01, 1992 | Gutierrez, Dan

Prior to the release of Clipper 5, the concept of an integrated preprocessor was foreign to most xBase developers.

Preprocessors have, however, been around for a long time in the C world, and their usefulness continues to shine.

A preprocessor does many things to improve application development; it promotes programs that are easier to read,

maintain, and enhance. In addition, the preprocessor can speed up your applications.

A preprocessor is the part of a compiler that provides for such features as

manifest constants,

include files (also known as header files),
conditional compilation,

pseudo functions, and

user-defined commands (UDCs).

This article explains what a preprocessor is, what it can do for your programming, and how to get the most out of using it.

Next time, I'll cover the portion of the preprocessor that lets you build UDCs.

What's a preprocessor?

Basically, a preprocessor is a "front end" to a compiler, reading the input source code, performing some manipulations, and

then passing the resulting modified code to the compiler. Think of a preprocessor as a program that prepares your source

code for the compiler. The result: The compiler needs to handle fewer language constructs. The preprocessor standardizes the

code before the compiler sees it, making the compiler's job easier and faster.

Everything begins with the source code you've written in PRG files and any external preprocessor files, Clipper header files,

and alternate command sets that supplement this source code. The preprocessor takes the source code

and preprocessor files and produces a translation (that can be written to a disk file), which is then passed on to the actual

compiler. This "preprocessed" version is actually a simpler version of your source code.

If you examine the preprocessed code, you'll find relatively few different commands. For example, there's no ? command in

the Clipper 5 language; all references to it are translated by the preprocessor to calls to the QOUT() console function. (Much

of what Clipper 5 does is by way of calls to various internal functions. Nantucket has discouraged calling these functions

directly, thus sidestepping the processor, because the internal functions may change from release to release; but the syntax of

the Clipper 5 language won't.)

There's no way to avoid the preprocessor, but this is a necessary situation. Without the preprocessor's actions, you'd never

successfully compile a program. In order for you to see the work of the preprocessor, include the /P switch when you compile

a program. This saves the preprocessed version of the program to a file with the same name as the program, except with a PPO
extension.

When you view the contents of PPO files, you'll notice blank lines throughout. This is due to the preprocessor's effort to

preserve the line numbers so the correct line will be diagnosed in the event of a runtime error or while you use the debugger.

Manifest constants

The first ingredient of the preprocessor to examine is the manifest constant. Using manifest constants intelligently can

enhance program readability and maintainability.

A manifest constant is a definition to the compiler that assigns a trying of text that may represent a constant, expression, part

of a command, etc. to some identifier (similar to a memory variable). The difference between a manifest constant and a

memory variable is that all manifest constants are resolved at "compile time," whereas memory variables may stay around for

the duration of the program, i.e. during execution. "Resolved" here simply means that by the time the compiler gets hold of

your source code, all the constant values you equated to preprocessor names have been substituted in place of the names.

Again, this process simplifies the job of the compiler considerably, since unlike memvars, constants take up no space in the

symbol table maintained by Clipper. Only the actual constant values are passed to the compiler.

Another difference between constants and memvars is that constants are only known to the program module in which they're
defined. If several modules need the constant, each module must include a definition for it. Since it can be tedious to include all

such definitions in all the programs that need them, there's feature called the header file that addresses this problem.

Another benefit to using manifest constants is flexibility. If a constant is referenced in many program modules and that

constant has to be changed, a memvar approach would require you to change the value in each and every program that needs

it. Manifest constants, on the other hand, require only one change.

In order to define a manifest constant to the preprocessor, you use the #DEFINE directive. The general form of #DEFINE is:

#define []

Here, the directive name is #define and is usually written in lower case (although upper case is fine too) is the manifest

constant name and is the optional text string with which the preprocessor will replace the name. For example, this:

#define MAXRECS 100

will replace all occurrences of MAXRECS with 100.

The job of the preprocessor in handling manifest constants is similar to a global search and replace function in a word

processor. The preprocessor scans the source code and makes replacements for all names thus defined.

There's one other way to declare a manifest constant to a program. You can use the /D compiler switch to make a definition

outside of the program. The syntax is:

/D [=]

Here, is the name of the constant you want to define. Notice that the part is optional. This is because the most frequent use of

the /D switch is to define an empty value. This will be more clear when describing the #IF#ELSE #ENDIF directives.

One thing to remember when coming up with names for manifest constants is that all substitutions are case sensitive. If a

directive such as:

#define PageTitle "CUSTOMER HISTORY REPORT"

is defined, then the following occurrence in the source code wouldn't be replaced:

@ 1,40 SAY PAGETITLE

Manifest constants are the only place where Clipper 5 cares about case (case doesn't matter with memvars). The custom is to
make manifest constants upper case.

There's no limit to the number of characters you can use in an identifier, and all will be significant (as opposed to a maximum

of 10 significant characters for memvars).

To illustrate how you might use a manifest constant, consider the following code segment:

#define PAGELENGTH 60

IF nLineCnt == PAGELENGTH

 // End-of-page code goes here

 nLineCnt := 1

ENDIF

Prior to the preprocessor, the IF statement's logical expression could have been:

IF nLineCnt == 60

or, a memvar could have been defined called "nPageLength" containing the value 60. Aside from taking up often precious

symbol table space, using a memvar "pseudo-constant" instead of a manifest constant tends to slow down your program

slightly. The following code:

PRIVATE nConstant := 7 // PUBLIC yields same speed

LOCAL nI, nVal

FOR nI := 1 TO 10000
 nVal := nConstant
NEXT

will yield slower execution speeds than this code:

#define CONSTANT 7

LOCAL nI, nVal

FOR nI := 1 TO 10000
 nVal := CONSTANT
NEXT

The preprocessor automatically substitutes the references to CONSTANT and replaces them with a 7. In other words, nVal :=

7 is the resulting code executed 10,000 times. In the former example, repeated references to the memory location represented

by the memvar nConstant are required to supply the value to the assignment statement.

Another benefit to using a manifest constant over a memvar is that a memvar may be changed inadvertently during the

execution of the program. A constant can never be altered unless another #define is embedded in the source code.

Also, a memvar's type can change dynamically during the operation of the program, making the program prone to the
possibility of a runtime error in the future. As a manifest constant, the memvar's name, value, and type (implicitly speaking)

remain the same at all times.

Manifest constant examples

One common use of manifest constants occurs while programming applications that interact with the keyboard. Consider the

following code:

#define K_ESC 27
IF nLastKey == K_ESC
 CLOSE DATABASES
 RETURN NIL
ENDIF

The logical expression preprocess to nLastKey == 27. Examine the resulting PPO file for proof.

Constants are also good for defining standard error messages that may be referred to in various places in a program. If the

following constant were defined in a program:

#define MSG_NOCUST "Error: customer not found"

it could appear in several commands, such as:

@ 10,25 SAY MSG_NOCUST

or:

@ 1,1 SAY "Severe " + MSG_NOCUST

You can also define a constant to contain part of a Clipper command. Below, we store a PICTURE clause in a manifest constant

for substitution into an @..GET command. The reason this works is clear once you remember that the preprocessor treats the
program like one big chunk of text.

#define ALLUPPER PICTURE '@!'

@ 10, 10 GET cCustName ALLUPPER

The "un-identifier"

There's one more preprocessor directive that pertains to manifest constants (and pseudo functions):

#undef

where is either a manifest constant name or pseudo function name. The purpose of this directive is to "un-define" an identifier.
The reason for this is that Clipper doesn't allow the same identifier to be used more than once in a #define directive; a

compiler warning results if the same identifier is redefined. To redefine an identifier, you must follow the original definition at

some point with an #undef directive, followed by another #define. For example:

#define MAXRECS 50
#undef MAXRECS
#define MAXRECS 100

Include files

Once a group of manifest constants (and pseudo functions) has been created for an application or part of an application, it's a

good idea to place them together in a file instead of entering the #define directives in each program file. Once grouped, it's

simple to reference them from a program module by using the #INCLUDE preprocessor directive. The general structure of this

directive is:

#include ""

Here, can be any legal DOS file specification, such as a combination of drive letter, path name, and file name. Although not

enforced by Clipper, it has become somewhat of a standard convention to use a CH file extension for Clipper 5 header files

(often called include files).

Clipper 5 uses header files extensively. In fact, the complier comes with a collection of standard includes (see the list below)

that define manifest constants for specific purposes. For example, INKEY.CH is one of the most widely used standard header

files because it contains names for each of the keys on the keyboard. If you inspect INKEY.CH, you'll see that K_UP is defined
as 5. This corresponds to the fact that an ASCII character code of 5 represents the keyboard's UP ARROW key. Each time you

need to refer to this key (possibly after calling the LASTKEY() function), you can use the manifest constant instead of hard

coding the numeric ASCII value in your program.

Header file

name

Constant

prefix

Usage notes

ACHOICE.CH
BOX.CH

DBEDIT.CH

DBSTRUCT.CH

DIRECTRY.CH

ERROR.CH

FILIO.CH

GETEXIT.CH

INKEY.CH

MEMOEDIT.CH
RESERVED.CH

SET.CH

SETCURS.CH

SIMPLEIO.CH

STD.CH

AC_
B_

DE_

DBS_

F_

EG_

F_, FC_, FO_, FS

GE_

K_

ME_

_ SET_

SC_

ACHOICE () UDF
Box drawing

DBEDIT () UDF

DBSTRUCT ()

DIRECTORY ()

Error codes

Direct file I/O functions

get : exitState values

INKEY () return values

MEMOEDIT () UDF
Naming conflicts

SET ()

SETCURSOR ()

Simplified I/O commands

Standard command definitions

You can also specify a header file for a compilation by using the /I compiler switch. Simply compile a program like this:

CLIPPER FOO /INETLIB.CH

This would make available all definitions found in a user-defined include file named NETLIB.CH available to the program being

compiled.

Another technique is to use the special DOS environment variable INCLUDE, which directs Clipper to a hard disk directory that

contains include files. From the DOS prompt (or more likely from a batch file) you'd enter:

SET INCLUDE c:/clipper5/include

One benefit to using include files is that a change to a #DEFINE must be made only once. Since all program files that depend

on include files have an #include directive, all references will automatically be resolved. This does require, however, that the

program be recompiled for the new constant values to take effect.

Conditional compiling

The next preprocessor capability, conditional compilation, provides a mechanism where certain statements or groups of

statements can be selectively included or ignored in the resulting compiled form of the program.

Often you have to develop a program in a general way, to provide functionality for a varied set of applications, but for a specific

application, there may be sections of code that you don't want to have compiled into the program. For example, let's say you've

developed a piece of software that targets two industries, but not at the same time. Believe for the moment that you've written

a generic General Ledger program for normal for-profit businesses, but have also included Fund Accounting provisions for non-
profit organizations. You only want to maintain one set of source code, but depending on who you're selling the product to, the

Fund Accounting portions may or may not be appropriate. Using the conditional compilation directives in Clipper 5, you can

compile the General Ledger program with or without the Fund Accounting features with just a one line change.

Conditional compilation also gives you the ability to build "demonstration" versions of your software by compiling code into the

application that checks, for example, for a maximum number of records in a database.

The directives in this area #IFDEF, #IFNDEF, #ELSE, and #ENDIF work like the standard xBase IF statement. The difference

between the preprocessor directives and the IF statements is that the former are all performed at compile time as opposed to
runtime. The syntax of these commands is:

#ifdef
[#else]
#endif

or alternately:

#ifndef
#[else]
#endif

where is a manifest constant name and are any valid Clipper 5 statements or commands. In the case of #IFDEF, the first set

of is included in the compilation if is defined, whereas the second set is compiled if it isn't. The reverse is true when using

#IFNDEF. It's here where the:

#define

form of the #define directive comes into play. Used this way, doesn't need a as described in the previous section dealing with

manifest constants. Instead, the fact that it's being defined is the information needed later on for conditional compilation.

Think of the preprocessor as managing a series of "existence markers" for manifest constants defined this way. If a constant
appears in the #DEFINE directive, then an "existence" or "true" marker is posted. For example, in both the #IFDEF and

#IFNDEF directives, must contain the name of a manifest constant that may or may not have appeared in a #DEFINE directive.

For the "true" to be executed, the identifier must only be defined. Consider this example:

#define DEMOVERS

#ifdef DEMOVERS
 GO BOTTOM
 IF RECNO () > 50
 ? "This is a demo version. Too many records"
 QUIT
 ENDIF
#endif

Here, the preprocessor sees the definition of the DEMOVERS identifier. Notice that there's no value associated with it. Instead,

the only piece of information needed is the fact that it's defined. Later, when the #IFDEF directive is encountered,

the preprocessor checks to see if DEMOVERS is defined; if it is, the code that follows is compiled into the program. In this
case, the code to check for a maximum record count is compiled; if the identifier hadn't been defined, this code would be

omitted from your program.

Pseudo functions

The pseudo function capability of the Clipper 5 preprocessor provides a vehicle for defining functions that are resolved at

compile time rather than when the program is running. Often, you can avoid using user-defined functions (UDFs) by

implementing them as pseudo functions, which enhances performance. UDF calls can be expensive in terms of the added
overhead required to issue a call to a function, pass parameters, and then return a value to the calling program. With pseudo

functions, although a function is still called and parameters are still passed, the process occurs at compile time not runtime. My

limited benchmark tests indicate that a UDF approach can be two and a half times slower than using pseudo functions.

The formal syntax of the pseudo function is:

#define () []

is the case-sensitive name with which you invoke the pseudo function. [] is the optional list of parameters that need to be

passed to the function. Last, is the function, in other words, the expression that the function uses to determine a return value.

Note that there shouldn't be a space after.

When a pseudo function is referenced in a program, textual substitution takes place. The preprocessor identifies a reference

to a pseudo functions with an optional parameter list--whose parameter count must match with that of the function's definition-

-and substitutes the () for the []. In addition, each of the passed parameters are substituted for their counterparts occurring

somewhere in.

Remember, all of this occurs at compile time, long before an EXE file is generated or code executed.

The parameters that appear in follow the same naming rules as for manifest constants. Moreover, you can't skip any
parameters found in the definition when a pseudo function is called (which you can do with UDFs).

Sometimes pseudo functions are called "compiler macros." This term is truly a misnomer and should be avoided. The term

"macro" has special connotations in the xBase world, normally indicating the process of performing textual substitution in the

program using the & operator.

How do you use a pseudo function? Suppose you need to convert a numeric memory variable to a string and at the same time

strip off all leading blanks in the resulting string. Normally, the STR() function pads out a converted numeric to a total of 10

characters, so we need a pseudo function, NTRIM(), to get rid of the padded blanks. The following is a definition for NTRIM()

that will perform this task:

#define NTRIM(n) (LTRIM(STR(n)))

A possible application of NTRIM() is:

LOCAL nSalary := 25000

? NTRIM (nSalary) // No leading blanks

Here's another example, where a pseudo function calls the REPLICATE() function, passing to it the number of times to replicate

the character:

#define SMOOTHLINE(n) REPLICATE (CHR(196),n)

This pseudo function accepts a numeric parameter and substitutes it for the replication factor in REPLICATE(). Using

SMOOTHLINE() would only make sense if the calling program requires numerous calls to REPLICATE() with the same replication

string.

Other features

The last preprocessor directive we'll look at is #ERROR. When #ERROR is encountered during the compilation of

a Clipper program, a compile time error is generated and an optional error message is displayed. The primary use of this

feature is to stop a compile when a crucial condition necessary for the successful completion of the compile doesn't exist. The

command is specified as:

#error []

where is an optional, non-delimited (in other words, quotes aren't needed unless they're to be displayed with the text)

character string that's displayed in the event that the #error directive is encountered. #error causes the compiler to generate
error number 2074.

As an example, consider this code segment:

#ifdef GRAPHICS
 #error Graphics aren't currently supported
#endif

Here if the GRAPHICS manifest constant is defined, the developer wanted to produce a version of the software with graphics

capabilities. Evidently, however, the code doesn't exist yet for such a feature, hence it makes no sense to go through with the

compile.

http://www.accessmylibrary.com/coms2/summary_0286-9256262_ITM

