
Try these new 5.01 language constructs.

(extensions to the database programming language in Nantucket Corp's Clipper

5.01 database development system)

Data Based Advisor

June 01, 1992 | Gutierrez, Dan D.

Clipper 5.01 introduced basic language constructs that can make programming more

efficient and effective:

* TYPE() and VALTYPE()
* ":=" assignment operator
* Increment (++) and decrement (--) operators
* "==" or "exactly equal" operator
* Code blocks and extended expressions as replaceme nts for macros
* // and /* */ for commenting

To put Clipper 5.01 through its paces, you have to understand basic language

constructs, such as data types, operators, extended expressions, alias functions, and

revised methods of commenting source code. In this article, we look at each of these

issues to lay a framework for more comprehensive programming.

Are you my type?

Clipper 5.01 offers all of the standard xBase data types plus a few new ones. For

database fields, only the standard xBase character, numeric, date, logical, and memo

types are available. However, a memory variable (memvar) can hold those, plus array,

code block, object, and NIL data.

A memvar's type is determined by "dynamic typing," the data type of the value it's first

assigned. This is considered a characteristic of a weakly-typed language, since the type

can be changed dynamically by simply assigning it a value of a different type. While

language purists have often pointed to this as a dangerous shortcoming in xBase, xBase

developers have viewed dynamic typing as a programming plus, since it lets you change

types at will. Regardless of which camp you're in, the use of Hungarian notation along

with a strict adherence to maintaining the initial type will help you avoid confusion.

(Remember, Hungarian notation aids type consistency by prefixing a single lower-case

character designator such as "c" for character, which permanently ties the memvar to a

specific data type.)

The following declaration statement assigns a value of each available type to a memory

variable:

LOCAL cZIP := '90024-4559',;
 nSalary := 45675,;
 dHireDate := CTOD ('10/27/60'),;

lFullTime :=.T.,;
aTaxRate := {8.25, 7.75, 6.5},;
bMax := {|| a },;
maxwidth := MAX(maxwidth, a) },;
oBrowser := TBrowseNEW (10, 10, 20, 70),;
vTemp

This example demonstrates the Hungarian naming conventions, how to construct

constant values for each data type, and how to use the in-line assignment operator, :=,

which we'll learn more about later. Notice that the last memvar defined, vTemp, has a

prefix of "v," which indicates that this memvar can have a variable data type during the

execution of the program. In other words, it's expected to undergo dynamic retyping.

It can be convenient to determine the type of a memvar during execution. For example,

a procedure or user-defined function (UDF) might require the type of a parameter passed

to it for proper processing. For this purpose, Clipper has two built-in functions, TYPE()
and VALTYPE().

The VALTYPE() function is generally considered more convenient since TYPE() uses

macro expansion to do its work--though both functions return a one- or two-character

code indicating the parameter type.

The TYPE() function requires a single-character expression parameter enclosed in

quotes. For example, TYPE("aMonth") returns an "A" indicating an array type, whereas

TYPE("aMonth[10]") might return a "C" since the 10th element of the array holds a

character string.

The following code returns the types of the memvars assigned above to produce the

output shown next to each line:

?? VALTYPE(cZIP), VALTYPE(nSalary) // C N
?? VALTYPE(dHireDate), VALTYPE(lFullTime) // D L
?? VALTYPE(aTaxRate), VALTYPE(bMax) // A B
?? VALTYPE(oBrowser), VALTYPE(vTemp) // O U

The type returned for vTemp is U, because Clipper assigns the value NIL to all declared

but uninitialized variables; so a type check of a variable whose value is NIL is "U" or

undefined.

The assignment operator

As you'll notice from my code example above, the new := assignment operator is used to

place a value in a memvar or database field. Contrast this with the use of = in xBase.

Depending on context, sometimes = handles assignment, and sometimes it's a test for

equality. In Clipper 5.01, the = can still be used for assignment, but it's discouraged in

favor of :=. There are other reasons for using :=, namely because it can be more

liberally placed in a program. Consider these examples:

nSalary := 25000 // Typical assignment statement

Here, we see that := can be used as a substitute for = when assigning values to a

memvar. There's no advantage to this beyond consistency of using := for assignment

purposes.

IF (dDate := (date()-365)) = CTOD('10/27/60')

In the IF statement, the logical expression has two components. The right side shows a

date constant, the left side has an in-line assignment. Here, the value (date()-365) is

used for the comparison, but it'll also be assigned to the memvar dDate. (Of course, the

same could be done in other languages, but two lines are needed. Clipper 5, as will

become evident, has many such shortcuts.)

? sqrt(nValue := (nValue**2))

In this example, the built-in sqrt() function is called, but its argument contains an in-line

assignment. The numeric expression nValue**2 is evaluated, passed to sqrt() and

assigned to nValue.

cCustNo := cSortSeq := custfile->custno+dtoc(date())

Here's a multiple assignment. (In xBase this is done with a STORE command.)

Custfile->custno := txn->txnno := cCustNo+dtoc(date ())

Finally, := can be used instead of the REPLACE command to assign values to database

fields.

Other operators

Clipper 5 has many other operators to make programming more streamlined. First, we'll

look at the increment "++" and decrement "--" operators. In Clipper we no longer need

to write:

nValue = nValue+1

or:

nValue = nValue-1

since the increment and decrement operators serve this purpose:

nValue++
nValue—

There are actually two forms to these operators. The illustrations above show the post-

increment and post-decrement form. This means that the increment is done after the

original value is used in an expression. This contrasts with the pre-increment and pre-

decrement form in which the operation is carried out before the value is used. Let's go

through some examples:

LOCAL nValue := 0, nNewValue, nValue1, nValue2
*
* Prefix-increment operator
nValue := 0
nNewValue := ++nValue // Change nValue
 // BEFORE assignment
? nValue // 1
? nNewValue // 1
*
* Postfix-decrement operator
nValue := 1
nNewValue := nValue-- // Change nValue
 // AFTER assignment
? nValue // 0
? nNewValue // 1
*
* Postfix-increment operator in an expression
*
* (Nantucket invented this word, rather than
*
* simply using "suffix.")
nValue := 10
? nValue++ * nValue // 110: increment; use 10;

 // multiply by 11
? nValue // 11
*
* Prefix-decrement operator in an expression
nValue := 10
? --nValue * nValue // 81: decrement, use 9;
 // multiply by 9
? nValue // 9
*
* Combined prefix and postfix operators
nValue := 10
? --nValue * nValue++ // 81: decrement, use 9;
 // multiply by 9; increment
? nValue // 10
*
* Combined prefix and postfix operators
nValue1 := 10
nValue2 := 10
? --nValue1 * nValue2++ // 90: decrement, use 9;
 // multiply by 10; incremen t
? nValue1 // 9
? nValue2 // 11

The comments associated with each use detail how the expression is evaluated. If the

answers don't make sense, try to remember the difference between when a memvar is

used in an expression vs. when it's updated with an increment or decrement operator.

There's also the following shorthand notation:

nValue += 365 // Equivalent to nValue:=nValue+365

 // also: -= *= /= %= ^=

which makes your code more concise.

Relational operators

As I've mentioned, the = operator is overloaded, so Clipper 5 offers another operator to

combat this situation. The "exactly equal" (==) operator is used in logical expressions to

test equivalence. Although it's commonly used with any data type, == has special

significance for character string comparisons. The basic difference between = and ==

lies in the way strings of unequal length are handled. Moreover, = is affected by the

current setting of SET EXACT, whereas == is not. The examples below illustrate how =

and == differ:

SET EXACT OFF
? '123' = '' // Always .T. if right string is null.
? '' = '123' // Always .F. if right is lon ger.
? '123' = '123456' // Same as above.
? '123456' = '123' // Do comparison for each righ t string character.
 // If all equal, then .T.

With SET EXACT ON, all of the above logical expressions evaluate to .F., since strings with

unequal lengths are automatically unequal. In addition, comparisons with = and SET
EXACT OFF begin by removing all trailing spaces (not physically, just for the comparison).

Under these conditions the following expression is evaluated as .T.:

SET EXACT ON ? '123' = '123' // .T. since equal in length and characters.

With the == operator, the problem is much simpler. Consider the following:

? 'Fredi' == 'Fred' // .F. since unequal in length.
? 'DDG' == 'DDG' // .T. the only time equal is p ossible.

The setting of SET EXACT doesn't influence the outcome; in fact, it's a good idea to leave

EXACT OFF for the duration of the program.

One more thing to note is the "!=" operator. For comparison, dBase III PLUS requires the

<> or # operators when testing for inequality.

Now, with Clipper 5, we can use the more recognizable exclamation point with the equal

sign. ! also makes its way into logical functions such as eof() where testing for "not end-

of-file" becomes !eof().

The fall of macros

Most xBase people, including developers moving from Clipper Summer '87, have been

educated to incorporate the "&" macro operator. Indeed, in those dialects, & was a

necessary evil that most people convinced themselves was both necessary and

good. Clipper 5 has taken the opposite position. Their reasoning: Programs that use the

macro operator heavily yield poorer performance than those that don't.

You can now avoid the & in Clipper 5. One area is solved by extended expressions, the

other by code blocks.

Extended expressions

A useful Clipper feature is extended expressions. These represent a path away from

macro use:

dbf_name = 'orders' && Variable DBF name

 && becomes part of USE

USE &dbf_name

can now be replaced with:

USE (dbf_name) // A clean alternative with no & thus eliminating a macro expansion.

Another common application of the macro is in variable database field names:

code_field = "CUST_NO" && Variable field name

&& becomes part of

&& the REPLACE statement

REPLACE &code_field WITH mTemp

This can be replaced (notice the change in coding style too) in Clipper 5 with:

LOCAL cField : = 'SUPP_NO', bField
USE supplier NEW
bField : = fieldblock(cField) // Create retrieval / assignment
 // code block for SUPP_NO
eval (bField, 'DDG001')

In this example, the built-in fieldblock() function builds a code block (a topic deserving its

own discussion) which, when evaluated, either gets or sets a database field's value. The

example above sets the field. If just the field's value is to be retrieved, EVAL(bField)

would suffice. In this example, you can see that macros are no longer needed for

variable field name situations.

Alias functions

Clipper offers a big improvement over the dBASE III PLUS standard by enabling

database-oriented functions to operate on a non-selected work area. The example below

shows how this works:

? customer-> (eof()) // Test end-of-file in CUSTOME R work area
? movie-> (recno()) // Get current record number i n MOVIE
? txn-> (bof()) // Test beginning-of-file in T XN work area
? txn-> (deleted()) // Return deleted flag of curr ent record
 // in TXN work area
? txn-> (fcount()) // Get number of fields in TXN work area
? txn-> (lastrec()) // Return last record number i n TXN
? txn-> (reccount()) // Display number of records i n TXN
? txn-> (recsize()) // Record size in TXN work are a

In dBase III PLUS, you have to use a SELECT statement to bring the desired work area

into view and then perform the function.

With Clipper 5, you can even define a SEEK() UDF and use it as:

txn-> (seek (movie->itemno))

Extended expressions are extremely flexible, but you may prefer to have ALIAS clauses

available for all related commands as in Clipper's SKIP command:

SKIP 1 ALIAS customer

SKIP is the only Clipper 5 command with an ALIAS clause, but by using a feature

of Clipper's preprocessor (user-defined commands or UDCs) you can have:

SEEK movie->itemno ALIAS txn

even though this isn't part of the Clipper 5 language definition. (s warrant future

discussion.)

Comments, comments, everywhere

Comments should be everywhere in an application program for all the obvious reasons.

In fact, you may have noticed an unfamiliar comment syntax introduced throughout the

examples of this article. With Clipper 5, commenting is made rather attractive by

allowing for the more "C-like" notation using "//" and "/* */". The // comment syntax

operates in the same manner and replaces dBase's &&. /**/ lets you bracket off a

group of characters considered comments. The most common usage of these types of

comments are in surrounding major comment blocks such as those preceding

subprogram code.

/*
DispMsg (cMsg, nTone, nDuration) - - NIL
This function displays a message cMsg, sounds a ton e described by nTone,
for a duration of nDuration.
*/

The above example could have been written with an * as the first non-blank character of

each line, but it's more easily done with /* */.

That's a wrap

Now that we've looked at basic ways to become productive with Clipper 5, it's time to

investigate one of Clipper's most dynamic features, the preprocessor, our subject for

next time.

http://www.accessmylibrary.com/coms2/summary_0286-9256409_ITM

