
Using code blocks, again

Data Based Advisor

November 01, 1991 | Spence, Rick

One of the most difficult concepts to grasp in Clipper 5.01 is the application of code blocks. In this article,
using one of Nantucket's sample programs as the key example, I'll show you how you can use code blocks to
reduce the size of programs. Let's start, however, with a review of the basics.

One more time...

Code blocks are a new data type. They're stored in variables, just like other data types such as numerics and
dates. You can pass code blocks as parameters, return them from functions, and copy them into other
variables.

One of the reasons some programmers have problems understanding code blocks is the type of data they
contain. Programmers are familiar with variables storing data such as names and addresses, telephone
numbers, and account balances.

Code blocks, however, store pieces of program code. These pieces of code can be passed to subroutines, such
as functions or procedures, and eventually that piece of code can be run. Code blocks are created using a
rather bizarre syntax:

bVar := { || test ()}

Read the "{" character as meaning "start code block" and the "}" character as "end code block." The two "|"
characters delimit the code block's formal parameter list. (I won't cover that this month.)

The bVar variable can be local, static, private, or public. It contains a piece of code that, when evaluated, calls
the function test().

To evaluate, or run a code block, use the new eval() function:

result := eval(bVar)

This calls test(). Like all functions, eval() returns a result. It returns the result of the expression contained

inside the code block. That's all there is to code blocks.

Code blocks for C programmers

For those who know the C language, Clipper's code blocks resemble C's pointers to functions. Pointers to
functions are a C data type, and they contain exactly what their name implies--a pointer to a function. The
pointer contains the machine address of the function. When you "dereference," or point to, the pointer, the

function is called. This is very similar to Clipper's eval() function.

Compiled expressions

I've shown a code block that contained a function call, but what exactly can you store in a variable whose type
is a code block? Code blocks can also contain compiled expressions, but what exactly is an expression?

Let's define an expression as a number of constants, variables, and functions calls, separated by operators,
that's evaluate to one value. Perhaps it's easier to define an expression in X-Base terms. You could say an
expression is anything you can put after the ? command:

? x ? 7 * 5 ? 3 - y ? test () / test1() * 4

In this example, "x", "7 * 5", "3 - y", and "test()/test1() * 4" are all expressions. You can't write:

? SEEK "Spence"

Therefore SEEK isn't an expression. Following this logic, you can't put a SEEK command inside a code block. See

how the analogy works? Note that SEEK is a, and commands aren't expressions.

Another one of Clipper's syntactic entities is a statement. Statements aren't expressions, therefore you can't

put them inside code blocks. Statements are things like IF, DO WHILE, DO CASE , and assignment, such as:

x = x + 1

This means you can't put an IF statement inside a code block, nor can you use the "=" assignment operator--or
can you? For example, figure out what the following prints:

x = 1
b = { | |x = x + 1}
? eval(b)
? x

The first "?" prints ".F.", the second "?" prints "1". The confusing thing about the "=" operator is that it's
overloaded. This means it does not of two things depending on how you use it. If you use it in the statement:

x = x + 1

it means "assign the sum of x and 1 to the variable x." It therefore performs an assignment. If you use the "="
operator in an expression:

x = 7

it means "compare two things for equality" (the comparison operator). The "=" is an assignment operator in a
statement, and a comparison operator in an expression. When you use it inside a code block (which contains
expressions), it means perform a comparison. Thus the code block:

{ || x = x + 1 }

when evaluated, means "compare x to x + 1," which returns false.

IF is a statement, therefore you can't place it inside a code block. However, there is a way to test from inside a
code block. You use a conditional expression, iif, as in:

b = { || iif(x = 1, a(), b())}

This means "if x is 1, call the function a; otherwise call the function b."

Using code blocks

In my article, "Code Block Basics" (Data Based Advisor Feb. 1991) I showed how to use code blocks to replace
macros and parameterize logic. The first way is efficient; the second reduces the amount of code. Let's look at
the second way.

Consider writing a routine to search an array. The built-in ascan() function does the basic job, but it compares

the array elements with the search value according to the state of SET EXACT. Maybe you want to search an

array ignoring case. You would write a function, such as ascani():

 1 FUNCTION ascani(ar, searchFor)
 2
 3 LOCAL i
 4
 5 DO WHILE i <= len(ar) .AND. ;
 6 upper(ar[i]) != upper(searchFor)
 7
 8 i = i + 1
 9
10 ENDDO
11
12 RETURN iif(i > len(ar), 0, i)

Like the ascan() function, ascani() returns the element number where the search value is found, a zero if it

isn't.

Assume you need a function to search an array, without regard for case, but now you want an exact

comparison. (The previous example was a comparison according to the state of SET EXACT.) The routine,

ascanie(), might look like:

 1 FUNCTION ascanie(ar, searchFor)
 2
 3 LOCAL i
 4
 5 DO WHILE i <= len(ar) .AND. ;
 6 !(upper(ar[i]) == upper(searchFor))
 7
 8 i = i + 1
 9
10 ENDDO
11
12 RETURN iif(i > len(ar), 0, i)

Compare the two routines for a moment. The only difference between ascani() and ascanie() is line 6. Here's

line 6 in the first routine:

6 upper(ar[i]0 != upper(searchFor)

and line 6 in the second:

6 !(upper(ar[i]) == upper(searchFor))

The only difference is the way you compare the search value with the array elements. The point is, if you need
to search an array 15 different ways, you'd write 15 different routines, each one different by just one line.
Take one more look. The only difference between these routines is the one line that actually does the
comparison. It's wasteful to repeat the other code since it doesn't change. What you need to do is write one
routine to search arrays, but pass a parameter indicating how to do the comparison. To do that you need to
pass a piece of code to do the comparison, and what data type do you think you should use? A code block. The
code block will do the comparison, and return a .T. if the element being compared is what you're looking for, .F.
if it isn't. The code block will accept a parameter--the array element being compared. You can thus write the

one ascan() function, as:

 1 FUNCTION ascan(ar, bComp)
 2
 3 LOCAL i 4
 5 DO WHILE i <= len(ar) .AND. ;
 6 !eval(bComp)
 7
 8 i = i + 1
 9
10 ENDDO
11
12 RETURN iif(i > len(ar), 0, i)

To perform the case-insensitive search, call ascan() with:

ascan(ar, { | el | upper(el) = "SPENCE"})

To do the exact, case-insensitive search, call it with:

ascan(ar, { | el | upper(el) == "SPENCE"})

Now you have one routine, with 15 different ways of calling it. Quite a saving! You may be aware that

Clipper 5's built-in ascan() function lets you to pass exactly this sort of code block as the second parameter (it

works just like I've shown).

A comprehensive example

For the comprehensive example, I've chosen one of Nantucket's source files, LOCKS.PRG, which you'll find on

the release disk. LOCKS.PRG contains some routines to help you try file and record locks, to append blanks,
and to open files on a network. The philosophy is, if at first your lock doesn't succeed, try, try, again! Actually,
you don't try forever; you usually try for so long before reporting an error. Two functions, RecLock() and
FilLock(), attempt record and file locks for the time specified by the caller. Their return result indicates their
success or failure. Listing 1 shows these two routines.

These two routines are identical except that RecLock() attempts an rlock() and FilLock() attempts an flock().

Listing 1--Nantucket's RecLock and FilLock from LOC KS.PRG

/***
* RecLock() --> lSuccess
* Attempt to RLOCK() with optional retry */
FUNCTION RecLock(nSeconds)
 LOCAL lForever
 IF RLOCL()
 RETURN (.T.) // Locked
 ENDIF
 lForever = (nSeconds = 0)
 DO WHILE (lForever .OR. nSeconds > 0)
 IF RLOCK()
 RETURN (.T.) // Locked
 ENDIF
 INKEY(.5) // Wait 1/2 second
 nSeconds = nSeconds - .5
 ENDDO
RETURN (.F.) // Not locked

/*** * FilLock() --> lSuccess
* Attempt to FLOCK() with optional retry */
FUNCTION FilLock(nSeconds)
 LOCAL lForever
 IF FLOCK()
 RETURN (.T.) // Locked
 ENDIF
 lForever = (nSeconds = 0)
 DO WHILE (lForever .OR. nSeconds > 0)
 IF FLOCK()
 RETURN (.T.) // Locked
 ENDIF
 INKEY(.5) // Wait 1/2 second

You can, of course, replace these with one routine, say NetTry(), and pass a code block to try either a record
lock or a file lock (see Listing 2). You can call it with:

IF !NetTry(5, { || rlock() }) // Couldn't get rec ord lock within 5 seconds

and:

IF !NetTry(3, { || flock() }) // Couldn't get fil e lock within 3 seconds

Without changing what NetTry() does, you can actually simplify it by writing the loop correctly. The version in
Listing 2 evaluates the block outside the loop, and, if that succeeds, immediately exits. Otherwise it enters the

loop which continually re-evaluates the block. Listing 3 shows a simpler version. It only contains one RETURN
statement! (Note: you can perform the same simplification to the original RecLock and FilLock if you don't care
to use NetTry().)

Listing 2--Replacing RecLock and FilLock

/***
* NetTry(,) --> lSuccess
* Attempt bAction with optional retry */
FUNCTION NetTry(nSeconds , bAction)
 LOCAL lForever
 IF eval(bAction)
 RETURN (.T.) // Locked
 ENDIF
 lForever = (nSeconds = 0)
 DO WHILE (lForever .OR. nSeconds > 0)
 IF eval(baction)
 RETURN (.T.) // Locked
 ENDIF
 INKEY(.5) // Waite /2 second
 nSeconds = nSeconds - .5
 ENDDO
RETURN (.F.) // Not locked

So far, you've replaced RecLock() and FilLock() with one routine about half its size. You can take this one step
further.

Listing 4 shows another routine, AddRec(), from LOCKS.PRG. Addrec() tries to append a record to a database

using the APPEND BLANK command. If the command fails, it loops the specified number of seconds, just like the

RecLock() and FilLock() functions.

Listing 3--Simplifying NetTry()

FUNCTION netTry(nSeconds, bAction)
 LOCAL lForever, lSuccess
 lForever := (nSeconds == NIL .OR. nSeconds == 0)
 DO WHILE !(lSuccess := eval(bTry)) .AND. ;
 (lForever .OR. nSeconds > 0)
 INKEY(.5) // Wait 1/2 second
 nSeconds = nSeconds - .5
 ENDDO
RETURN lSuccess

The code is once again very similar to RecLock() and FilLock(), thus a candiate for replacement with NetTry().

This time, there are a couple of complications. The first is that a failed APPEND BLANK is detected by checking

the result of neterr() after the attempting the command.

In the previous case, you called functions (rlock() and flock()) which returned their success or failure. The

second problem is that APPEND BLANK is a command. Since commands aren't expressions, they can't be placed

directly inside code blocks.

You can overcome both problems, however. Clipper 5.01 introduced functional equivalents of all the built-in

database processing commands. Dbseek(), for example, is the functional equivalent of the SEEK command. (In

fact the standard header file, STD.CH, simply converts the SEEK command into a call to dbseek().) You can

also call these functions directly, just like the functions you're used to calling, such as substr() and ctod().

Listing 4--AddRec from LOCKS.PRG

/***
* AddRec(WaitSeconds) --> lSuccess
* Attempt to APPEND BLANK with optional retry */

FUNCTION AddRec(nWaitSeconds)
 LOCAL lForever
 APPEND BLANK
 IF .NOT. NETERR()
 RETURN (.T.)
 ENDIF
 lForever = (nWaitSeconds = 0)
 DO WHILE (lForever .OR. nWaitSeconds > 0)
 APPEND BLANK
 IF .NOT. NETERR()
 RETURN .T.
 ENDIF INKEY(.5) // Wait 1/2 second
 nWaitSeconds = nWaitSeconds - .5
 ENDDO
RETURN (.F.) // Not locked

The functional equivalent of APPEND BLANK is dbappend(), so you can call dbappend() in the code block you

pass to NetTry(). Now, the block you pass to NetTry returns a .T. if the operation succeeds, otherwise a .F. You
can check that by checking neterr(), so you replace Nantucket's AddRec() with a call to NetTry() with:

IF !NetTry(4, { || dbAppend(), !neterr() }) // Cou ldn't APPEND record within 4 seconds

The final function to replace is Nantucket's NetUse(). It tries to open a file in the requested mode, then returns

a logical indicating success or failure. An error is indicated by neterr() returning a .T.. I'll leave the call to

NetTry() as an exercise. (Hint: the functional equivalent of USE is dbUse().

Summary

In this article, I show some practical ways to use code blocks. I showed how to use them to parameterize the
logic of a routine. I used the example of searching arrays many different ways with one function, and another
of replacing four almost identical Nantucket routines with one using four different calls.

A former member of the Nantucket development team, Rick Spence owns Software Design
Consultants, a training and consulting company. He's also the author of Clipper Programming Guide,
2nd Edition, published by Data Based Solutions, Inc. and Slawson Communications, and technical
editor of Compass For Clipper, a monthly journal from Island Publishing. You can contact Rick through
Software Design Consultants at (818) 892-3398, on MCI (LSPENCE), or on CompuServe (71760,632).

http://www.accessmylibrary.com/coms2/summary_0286-9243222_ITM

